skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stancheva, Rosalina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Stewart, Frank J. (Ed.)
    ABSTRACT We describe the metagenome composition, community functional annotation, and prokaryote diversity in calcareous stromatolites from a dry stream bed of the San Felipe Creek in the Anza Borrego Desert. Analyses show a community capable of nitrogen fixation, assimilatory nitrate reduction, biofilm formation, quorum sensing, and potential thick-walled akinete formation for desiccation resistance. 
    more » « less
  3. Abstract Determining how streams develop naturally, particularly the ecological role of newly developed riparian canopy cover, is essential to understanding the factors that structure new stream communities and provides valuable information for restoring highly disturbed ecosystems. However, attempts to understand primary succession in riverine ecosystems have been hindered by a lack of data owing to the infrequent formation of new rivers on the landscape. In the present study, we used five streams formed following the 1980 eruption of Mount St. Helens (WA, USA) to examine the influence of canopy cover development on algal and benthic macroinvertebrate assemblages, biomass, and organic matter processing. Newly established closed canopy reaches had less available light, but no significant differences in algal biomass or macroinvertebrate assemblages compared to open canopy reaches. Instead, algal and macroinvertebrate communities were structured mainly by hydrologic differences among watersheds. In contrast, organic matter processing rates were sensitive to canopy cover development, and rates were faster under closed canopies, especially in late summer or after terrestrial preconditioning. After 40 years of stream and riparian primary successional development, canopy cover strongly influences ecosystem function, but aquatic organism assembly was more influenced by physio-chemical and hydrologic variation. Our findings provide insight into the development of in-stream assemblages and ecosystem functions, which is also relevant to efforts to address major disturbances to stream channels, such as volcanic eruptions, floods, forest fires, and clear-cut logging. 
    more » « less
  4. Abstract Biological assemblages in streams are influenced by hydrological dynamics, particularly in non‐perennial systems. Although there has been increasing attention on how drying impacts stream organisms, few studies have investigated how specific characteristics of drying and subsequent wetting transitions influence biotic responses via resistance and resilience traits.Here, we characterized how hydrologic metrics, including those quantifying drying and wetting transitions as well as dry and wet phases, alter diversity and composition of three aquatic assemblages in non‐perennial streams in southern California: benthic macroinvertebrates, soft‐bodied algae and diatoms.We found that flow duration prior to sampling was correlated with variation in macroinvertebrate and soft‐bodied algal assemblage composition. The composition and richness of diatom assemblages, however, were predominantly influenced by the drying start date prior to sampling. Contrary to other studies, the duration of the dry phase prior to sampling did not influence the composition or richness of any assemblage. Although our study was conducted within a region in which each assemblage experienced comparable environmental conditions, we found no single hydrologic metric that influenced all assemblages in the same way.The hot‐summer Mediterranean climate of southern California likely acts as a strong environmental filter, with taxa in this region relying on resistance and resilience adaptations to survive and recolonize non‐perennial streams following wetting. The different responses of algal and diatom assemblages to hydrologic metrics suggest greater resilience to drying and wetting events, particularly for primary producers.As drying and wetting patterns continue to change, understanding biodiversity responses to hydrologic metrics could inform management actions that enhance the ecological resilience of communities in non‐perennial streams. In particular, the creation and enhancement of flow regimes in which natural timing and duration of dry and wet phases sustain refuges that support community persistence in a changing environment. 
    more » « less
  5. Abstract Persistent nitrogen depletion in sunlit open ocean waters provides a favorable ecological niche for nitrogen-fixing (diazotrophic) cyanobacteria, some of which associate symbiotically with eukaryotic algae. All known marine examples of these symbioses have involved either centric diatom or haptophyte hosts. We report here the discovery and characterization of two distinct marine pennate diatom-diazotroph symbioses, which until now had only been observed in freshwater environments. Rhopalodiaceae diatomsEpithemia pelagicasp. nov. andEpithemia catenatasp. nov. were isolated repeatedly from the subtropical North Pacific Ocean, and analysis of sequence libraries reveals a global distribution. These symbioses likely escaped attention because the endosymbionts lack fluorescent photopigments, havenifHgene sequences similar to those of free-living unicellular cyanobacteria, and are lost in nitrogen-replete medium. Marine Rhopalodiaceae-diazotroph symbioses are a previously overlooked but widespread source of bioavailable nitrogen in marine habitats and provide new, easily cultured model organisms for the study of organelle evolution. 
    more » « less
  6. null (Ed.)
  7. Abstract The ecological, evolutionary, economic, and cultural importance of algae necessitates a continued integration of phycological research, education, outreach, and engagement. Here, we comment on several topics discussed during a networking workshop—Algae and the Environment—that brought together phycological researchers from a variety of institutions and career stages. We share some of our perspectives on the state of phycology by examining gaps in teaching and research. We identify action areas where we urge the phycological community to prepare itself to embrace the rapidly changing world. We emphasize the need for more trained taxonomists as well as integration with molecular techniques, which may be expensive and complicated but are important. An essential benefit of these integrative studies is the creation of high‐quality algal reference barcoding libraries augmented with morphological, physiological, and ecological data that are important for studies of systematics and crucial for the accuracy of the metabarcoding bioassessment. We highlight different teaching approaches for engaging undergraduate students in algal studies and the importance of algal field courses, forays, and professional phycological societies in supporting the algal training of students, professionals, and citizen scientists. 
    more » « less
  8. Abstract Here, we report the discovery of a novel Sediminibacterium sequenced from laboratory cultures of freshwater stream cyanobacteria from sites in Southern California, grown in BG11 medium. Our genome-wide analyses reveal a highly contiguous and complete genome (97% BUSCO) that is placed within sediminibacterial clades in phylogenomic analyses. Functional annotation indicates the presence of genes that could be involved in mutualistic/commensal relationship with associated cyanobacterial hosts. 
    more » « less
  9. Abstract Although most lotic ecosystems experience frequent and sometimes large disturbances, opportunities are uncommon to study primary succession in streams. Exceptions include new stream channels arising from events such as glacial retreat, volcanism, and catastrophic landslides. In 1980, the eruption and massive landslide at Mount St. Helens (WA, U.S.A.) created an entire landscape with five new catchments undergoing primary succession. We asked if riparian and lotic assemblages at early successional stages (36 years after the eruption) showed predictable change along longitudinal gradients within catchments, and whether assemblages were similar among five replicate catchments.In July 2016, we collected environmental data and characterised riparian, algal, and benthic macroinvertebrate assemblages at 21 stream reaches distributed within and among five neighbouring catchments. We evaluated patterns of richness, abundance, biomass, multivariate taxonomic community structure, and functional traits both longitudinally and among catchments.We found minimal evidence that longitudinal gradients had developed within catchments at 36 years post‐eruption. Increases in diatom and macroinvertebrate richness with downstream distance were the only biological responses with longitudinal trends. Conversely, we documented substantial variation in community structure of riparian plants, soft‐bodied algae, diatoms, and macroinvertebrates at the among‐catchment scale. Among‐catchment differences consistently separated two eastern catchments from three western catchments, and these two groups also differed in stream water chemistry, water temperature, and geomorphology.Overall, we documented greater diversity in the young catchments than predicted by ecologists in the years immediately following the eruption, yet functional traits indicate that these catchments are still in relatively early stages of succession. Variation at the among‐catchment scale is likely to be driven in part by hydrological source variation, with the two eastern catchments showing environmental signatures associated with glacial ice‐melt and the three western catchments probably fed primarily by springs from groundwater aquifers. Contemporary flow disturbance regimes also varied among catchments and successional trajectories were probably reset repeatedly in streams experiencing more frequent disturbance.Similar to new stream channels formed following glacial retreat, our results support a tolerance model of succession in streams. However, contrasting abiotic templates among Mount St. Helens catchments appear to be driving different successional trajectories of riparian plant, algal, and macroinvertebrate assemblages among neighbouring small catchments sharing the same catastrophic disturbance history. 
    more » « less